| | Improving Antibody Performance on Milo with the Signal Enhancement Reagent | [概要表示] |
|
In this Application Note, we show you how it may be possible to optimize the signal of poorly behaving antibodies with the Signal Enhancement Reagent on Milo. |
| | Wes and Milo Synergize to Profile Immune Cell Populations in the Tumor microenvironment | [概要表示] |
|
In this application note, we’ll show you how Wes™ and Milo™ partner to get you critical answers to 1) what type of immune cell populations are present in a sample and then 2) what percentage of cells in that sample make up a specific immune cell subtype. |
| | Mending the Myocardium: Tracking Cardiomyocyte Differentiation with Single-Cell Westerns | [概要表示] |
|
In this application note, we validate Milo for the analysis of hiPSC-CM cultures. Further, we demonstrate how Single-Cell Western analysis can track phenotypic marker heterogeneity over time and monitor the relative proportion of cell subsets during culture differentiation |
| | WesとMiloの相乗効果で腫瘍微小環境の 免疫細胞集団のプロファイルを作成 | Japanese | [概要表示] |
|
腫瘍微小環境は、がん細胞や、非がん性および免疫細胞の統合ネットワークであり、その相互作用により腫瘍の不均一性、転移の広がり、そして後天的な薬剤耐性が促進されます。特に、腫瘍微小環境におけるリンパ球、マクロファージ、樹状細胞などの白血球の浸潤は重要な予後予測因子であり、がん免疫療法により期待される治療効果を妨害する主な障害要因としても認識されています。このアプリケーションノートでは、Wes™とMilo™がどのように連携して、まず、1)サンプルにはどのような種類の免疫細胞が存在するか、そして、2)何パーセントの細胞が特定の免疫細胞サブタイプなのかという重要な問いかけに答えるのかを示します。 |
| | Identify and Quantify Neural Subtypes with Single-Cell Westerns Application Note | [概要表示] |
|
In this application note, we demonstrate how Milo can be used to identify and quantify neural subtypes in a heterogeneous neural sample, and monitor the differentiation of induced pluripotent stem cells (iPSCs) into neurons, astrocytes, and oligodendrocytes using R&D Systems research-grade or GMP differentiation reagents. |
| | Dissociation of Mouse Neural Tissue for Single-Cell Western Analysis Application Note | [概要表示] |
|
In this application note, we describe and characterize
a protocol to successfully dissociate mouse neural tissue microsurgically dissected from combined cortex, ventricular
zone, and hippocampus regions of E18 mice into single cells. |
| | Multiplexed Single-Cell Western Analysis of Red Blood Cells for Biomarker Detection in Blood and Neurodegenerative Disorders | |
| |
| | Going with The Flow: Using Milo to Streamline Your Flow Cytometry Experiments | |
| |
| | Generating Single-Cell Western Protein Heterogeneity Data with an InnoScan 710 Scanner | [概要表示] |
|
In this application note, we describe how you can generate great Single-Cell Western data with an Innoscan 710 scanner, which has the best combination of sensitivity, scan time and resolution needed to scan scWest chips. |
| | Using Single-Cell Westerns to Validate Single-Cell RNA-Seq Data | [概要表示] |
|
Single-cell gene expression studies are revolutionizing our understanding of heterogeneity in disease. Single-cell RNA sequencing tools are powerful for discovering mRNA transcript heterogeneity. However, mRNA levels do not always correlate with functional protein levels. In this application note, learn how Milo was used in parallel with a single-cell RNA-Seq workflow at the Stanford Functional Genomics Facility to validate single-cell RNA expression studies with single-cell protein expression data and ensure accurate and complete conclusions about cellular function. Because it uses the large Western catalog of antibodies & can easily measure intracellular proteins, Milo is the only platform with the versatility to detect diverse targets that are discovered in a sequencing run. |
| | Reveal Cell Subtypes, Protein Isoforms, and Phospho-Protein Heterogeneity with Milo | [概要表示] |
|
In this application note, we demonstrate several measurements that are difficult or impossible to make with conventional westerns or flow cytometry. We uncover three distinct cell subpopulations that differ based on single- or co-expression of two different protein targets and that could not be distinguished using conventional westerns or flow cytometry. We also demonstrate Milo’s ability to detect discrete cell signaling states by measuring multiple phospho-proteins in individual cells within a population. Finally, we demonstrate how Milo can simultaneously quantify phospho- and total protein expression in each individual cell and quantify how the extent of phosphorylation varies across stimulated and unstimulated cell populations. |
| | Adapting the Single-Cell Western Protocol to Detect Histone Modifications | [概要表示] |
|
The Single-Cell Western™ protocol is highly versatile and can easily be adapted for different biological applications and protein targets. Researchers studying signaling proteins or other targets that require treatment of cells prior to analysis can add a drug, cytokine, or other form of pre-treatment directly to scWest chips after cells have been captured and before running the chip on Milo. Cells can also be treated just prior to settling them onto scWest chips. As a result, the flexible Single-Cell Western workflow allows time-dependent experimental manipulations to be easily performed before lysis and electrophoresis.
Here we describe a two-step, on-chip pre-treatment protocol to measure heterogeneity of modified histones — a class of proteins that is challenging to measure but critical in regulating gene expression. This new measurement capability could be key to unlocking new discoveries in the field of epigenetics. |
| | Protein Expression Heterogeneity with Milo, the First Single-Cell Western System | [概要表示] |
|
Every cell is unique, making cell-to-cell heterogeneity important in many areas of biomedicine including cancer pathogenesis, immuno-oncology and regenerative medicine. More and more high-profile publications are using single-cell analysis techniques to reveal variability in cellular response to a drug or stimulus. They're also uncovering variation in drug target expression within a tissue and identifying important subpopulations of cells within complex samples that play key roles in disease progression. Single-cell protein expression information is critical when you need to understand the fundamental composition and behavior of complex biological samples.
Milo, the first and only Single-Cell Western platform out there, lets you do Western blotting at the single-cell level. Now you can run Westerns on thousands of individual cells in parallel and get robust, Western-based information on protein expression heterogeneity in your cells. He also multiplexes so you can measure multiple proteins in each single cell. That means you can get a better understanding of correlations between target expression and characterize cell signaling in specific target-positive subpopulations of cells. Where your target is located in a cell doesn't matter to Milo — his fast, simple workflow lets you measure proteins both on and in each individual cell with the same workflow. It's easy to detect surface proteins and you don't have to worry about fixing and permeabilizing your sample to measure intracellular proteins. As an added bonus, Milo uses conventional Western antibodies which means you can measure diverse protein targets — even ones that don't have good flow cytometry antibodies. The best part? Scout™ Software automates your data analysis and gives you quantitative protein expression measurements in each single cell. |
| | The Single-Cell Western has Arrived | [概要表示] |
|
Milo enables scientists to perform single-cell resolution Westerns (scWesterns) for over 1,000 individual cells simultaneously, and in a fraction of the time of conventional Westerns. Researchers can now gain selective protein expression information for up to four protein targets in each cell, offering views into cell-to-cell variation within a complex sample. |
| | Next-Generation Analytical Solutions for Cell & Gene Therapy | [概要表示] |
|
ProteinSimple’s analytical platforms give you the automation and scalability needed for the development and manufacturing of C> products, and with low volume requirements, we help you preserve these precious samples. Platform methods can be seamlessly transferred across labs and project phases, from discovery to manufacturing, giving you consistent results from start to finish. |
| | Next Generation Electrophoresis Technology for Protein Separation and Analysis | [概要表示] |
| |
| | Stem Cell Analysis: Advances in Western Blotting Technologies
| [概要表示] |
|
Protein analysis plays an important role in stem cell research, and for most researchers, Western blotting is a key component of their toolbox. From verifying pluripotency and identifying lineage-specific cell types to identifying key modulators of cell signaling pathways, to evaluating disease models and therapeutic approaches, the right protein analysis
techniques can help you achieve success. In this eBook, we examine technological advances in Western blotting and protein analysis that are at the forefront of stem cell research. Learn how automated Western systems and Single-Cell Westerns can advance your stem cell research.
|
| | Investigating Immuno-Oncology: Advances in Protein Analysis Tools | [概要表示] |
|
In this eBook, we examine technological advances in protein analysis that are at the forefront of immuno-oncology research and therapeutic development. |
| | Applications in Bioprocessing | |
| |
| | Advances in Neuroscience: Win the Race to Discovery with Automated Instruments for Neuroscience Research | [概要表示] |
|
Research into prevention and treatment of disorders of the brain and nervous system are in greater demand as the world’s population expands. This group of diseases result in more hospitalizations than any other group, including heart disease and cancer. Odds are that you know someone affected by a neurological disorder, as The World Health Organization estimates that one billion people are affected by them, contributing to 11% of the world’s disease burden. |
| | Profiling immune cell populations in the tumor microenvironment with complementary capillary-based and single-cell Western assays -- Dr. Charles Haitjema | [概要表示] |
|
The tumor microenvironment (TME) is a complex mixture of cancerous and non-cancerous cells, including immune cells like T-cells, macrophages, and neutrophils. The TME plays a key role in tumorigenesis and metastasis, and it has recently been recognized that it can dramatically shape a response to therapy. Thus, there is a pressing need to accurately identify and quantify the variety of cell types in any given TME. However, studying the TME presents major challenges. For example, the heterogeneity of the environment requires sensitive and high-resolution techniques to parse subpopulations of different cell types. This challenge is compounded by the severely limited sample size that can be obtained from donor tissues. To address these challenges, we use an in-capillary immunoassay with small sample sizes (3 µL) to identify immune cells commonly found in the TME. We also leverage single-cell Western to uncover trends in population heterogeneity. Human peripheral blood mononuclear cells (PBMCs) were differentiated into dendritic cells (DCs) and regulatory T cells (Tregs), and natural killer (NK) cells were expanded from isolated NK cells. These samples were then analyzed by in-capillary immunoassay and single-cell Western. These analyses revealed the identification and characterization of cell types, at both the single-cell and population level, based on the differential expression of protein biomarkers. Specifically, in-capillary immunoassay analysis identified mature populations by CD209 for DCs, a CD56+/CD3- phenotype for NK cells, and CD25 and Foxp3 expression for Tregs. Analysis of single cells provided further detail within these populations, for example, we observed FoxP3low and FoxP3high subpopulations in Tregs, and an unexpectedly large (81%) CD56-/CD3- subpopulation in undifferentiated PBMCs, suggesting the presence of other cell subtypes. We anticipate that the small sample size, automation, single-cell resolution, and multiplexing ability of these assays collectively will enable a more efficient and deeper characterization of the TME not possible with traditional immunoassays like Western blot and flow cytometry. |
| | Advanced Western Blotting Solutions for Regenerative Medicine and Cell Therapy | [概要表示] |
|
See why leaders in regenerative medicine and cell therapy research use Simple Western™ and Single-Cell Western. |
| | Simple Western and Single-Cell Western Advance Cell & Gene Therapies | [概要表示] |
|
This Scientific Review highlights how Simple Western and Single-Cell Western are instrumental in developing cell & gene therapies for Duchenne muscular dystrophy, lupus, cystic fibrosis, and sickle-cell disease. We also include references to other noteworthy cell & gene therapy publications that harness the power of Simple Western and Single-Cell Western. |
| | Picking Up Signals: Simple Western and Single-Cell Western Map Cell Signaling | [概要表示] |
|
This Scientific Review highlights scientific articles that demonstrate how Simple Western and Single-Cell Western provide a holistic overview of signaling pathways in many different cell types, organisms, and environments, from the study of cancer to the impact of spaceflight. |
| | On the Cutting Edge of Immuno-Oncology with Simple Western and Single-Cell Western - Scientific Review | [概要表示] |
|
This Scientific Review highlights recent studies that demonstrate the use of Simple Western and Single-Cell Western assays to make breakthroughs in immuno-oncology. |
| | Single-Cell Western Advances Gene Therapies for Sickle Cell Disease and Other Hemoglobinopathies - Publication Spotlight | [概要表示] |
|
Sickle cell disease results from a single point mutation in the β-subunit of hemoglobin (β-globin). Single-Cell Western is advancing sickle cell gene therapies. |
| | Simple Western and Single-Cell Westerns are Proven, High-Impact Technologies - Publication Spotlight | [概要表示] |
|
Since its development in 1979, the essential steps of the Western blot (gel electrophoresis, transfer and immunodetection) have remained constant with only minor modifications. With the introduction capillary based westerns in 2009, ProteinSimple has been the world leader in revolutionizing traditional western blotting through advances in automation, sensitivity, and single-cell resolution among others. |